

Chapter 4

Investment comparison

I) <u>Present values, future values</u>

Consider an actor A on the market. Assume that at time t it receives a cash flow a:

- a > 0 if he receives cash
- a < 0 if he pays cash

Consider a date s < t. Assume that we are given an interest rate r with compounding period 1 and that $t - s \in \mathbb{N}$. Then, the present value at time s of the future cash flow is $PV_0(a \neq (1 + r)^{0.34}) = a$

56 0789: 0345;

The factor $(1 + r^{0})^{34}$ is called a discount factor.

Make the same assumptions as before, except that s > t.

Then, the cash flow a occurring at time t has a future value at time s > t, given by

$$FV_0(a) = \underbrace{(1+r)^{034}}_{=6\ 0789:\ 034=;} a$$

The factor $(1 + r^{0})^{34}$ is called an accumulation factor.

II) <u>Criterion 1: present value of a sequence of cash flows</u>

If we have an interest rate r playing the role of a reference, we can evaluate and compare investments using

Usually, one takes the riskless interest rate available on the market. There we assume that the compounding period for this rate r is 1.

The net present value at time 0 of a sequence of cash flow $\mathbb{C} = (c_1, c_6, ..., c_B)$ occurring at times 0, 1, .., N is $NPV_E^{c_1}(C) = \sum_{AG_1}^{B} (1+r)^{34} c_4$

This gives us a criterion for comparison: given two investments generating the sequences of cash flow $\mathbb{C}^{(6)}$, $\mathbb{C}^{(H)}$, we will prefer the first one if

$$NPV^{\sharp}(\mathbb{C}^{0}_{()}) > NPV^{\sharp}(\mathbb{C}^{0}_{()}) > NPV^{\sharp}(\mathbb{C}^{0}_{()})$$

If $NPV^{\sharp}_{E}(\mathbb{C}^{0}_{()}) = NPV^{\sharp}_{E}(\mathbb{C}^{0}_{()})$, we say that $\mathbb{C}^{E}_{()}(\mathbb{C}^{0}_{()}) = NPV^{\sharp}(\mathbb{C}^{0}_{()})$ are indifferent.

Limit of this criterion:

- It does not take risk into account
- Maturity should also play a role : for instance, if $NPV(\mathbb{C}^{(6)}) = NPV(\mathbb{C}^{(6)})$ we should prefer the investment with smaller maturity N
- The interest rate is not easy to choose

III) <u>The method of the yield rate</u>

Definition: consider a sequence of cash flow $\mathbb{C} = (c_4)_{4G;,6,\dots,B}$. The yield rate, or Internal Rate of Return (IRR) of \mathbb{C} , is the interest rate $r^* \ge 1$ solution of $NPV_{E}^{\ddagger}(\mathbb{C}) = 0$

Note that $r^* = IRR \mathbb{Q}$ is intrinsic, it does not depend on another interest rate r. Unfortunately, it can happen that $IRR \mathbb{Q}$ does not exist, or it is not unique.

Theorem: If a sequence of cash flows $\mathbb{C} = \mathfrak{C}_{6}, \dots, c_{B}$ of such that $c_{6}, c_{H}, \dots, c_{M}$ have the same sign, with at

leat one c_7 ($0 \le i \le p$) non zero, for some $1 \le p \le n - 1$. Suppose in addition, that c_{MT6} , c_{MTH} , ..., c_B all have the opposite sign to $(c_6, ..., c_M)$ and that at leat one c_U ($p + 1 \le j \le N$ is non zeo.

Then, the IRR of \mathbb{C} exists and is unique.

 \rightarrow Proof

We only write the proof when $c_6, ..., c_M \le 0$ and $c_{MT6}, ..., c_B \ge 0$ (the other case follows, replacing \mathbb{C} by $-\mathbb{C}$)

We will assume that for some $0 \le p^{\text{W}} \le p : c_{\text{M}^{\text{X}}} < 0$ and the case $p^{\text{W}} .$ $Similarly, let <math>p^{\text{W}} \ge p + 1$ such that $c_{\text{M}^{\text{XX}}} > 0$ and in the case $p^{\text{W}} > p + 1 : c_{\text{MT6}} = \cdots = c_{\text{M}^{\text{XX}}36} = 0$. In other words, p' is the last time t such that $c_4 < 0$ and p^{W} is the first time t_{M} such that $c_4 > 0$.