Chapter 4

Investment comparison

I) Present values, future values

Consider an actor A on the market. Assume that at time t it receives a cash flow a :

- $\quad a>0$ if he receives cash
- $a<0$ if he pays cash

Consider a date $s<t$. Assume that we are given an interest rate r with compounding period 1 and that
$t-s \in \mathbb{N}$. Then, the present value at time s of the future cash flow is $P V_{0}(a \neq \underbrace{(1+r)^{334}}_{560789: 0345} a$
The factor $(+r)^{034}$ is called a discount factor.
Make the same assumptions as before, except that $s>t$.
Then, the cash flow a occurring at time t has a future value at time $s>t$, given by

$$
F V_{0}(a)=={ }_{=60789: 034=;}^{(1+r)^{034}} a
$$

The factor $\left(\mathbb{t}+r^{034}\right.$ is called an accumulation factor.

II) Criterion 1: present value of a sequence of cash flows

If we have an interest rate r playing the role of a reference, we can evaluate and compare investments using
Usually, one takes the riskless interest rate available on the market. There we assume that the compounding period for this rate r is 1 .
The net present value at time 0 of a sequence of cash flow $\mathbb{C}=\left(c_{;}, c_{6}, \ldots, c_{\mathrm{B}}\right)$ occurring at times $0,1, \ldots N$ is $N P V_{\mathrm{E}}{ }^{;}(C)=\sum_{A \mathrm{G}}^{\mathrm{B}} ;(1+r)^{34} C_{4}$

This gives us a criterion for comparison: given two investments generating the sequences of cash flow $\mathbb{C}^{(6)}$, $\mathbb{C}^{(H)}$, we will prefer the first one if

Limit of this criterion:

- It does not take risk into account
- Maturity should also play a role : for instance, if $N P V\left(\mathbb{C}^{(6)}\right)=N P V(\mathbb{C}$, we should prefer the investment with smaller maturity N
- The interest rate is not easy to choose

III) The method of the yield rate

Definition: consider a sequence of cash flow $\mathbb{C}=\left(C_{4}\right)_{4 G ; 6, \ldots, B}$. The yield rate, or Internal Rate of Return $\left(\right.$ IRR) of \mathbb{C}, is the interest rate $r^{*} \geq 1$ solution of $N P V_{E}^{*}(\mathbb{C})=0$

Note that $r^{*}=I R R \mathbb{C}$ is intrinsic, it does not depend on another interest rate r.
Unfortunately, it can happen that $I R R \mathbb{C}$ gloes not exist, or it is not unique.

Theorem: If a sequence of cash flows $\mathbb{C}=\left(6, \ldots, c_{\mathrm{B}}\right.$ of such that $c_{6}, c_{H}, \ldots, c_{\mathrm{M}}$ have the same sign, with at
leat one $c_{7}(0 \leq i \leq p)$ non zero, for some $1 \leq p \leq n-1$.
Suppose in addition, that $c_{\text {MT6 }}, c_{\text {MTH }}, \ldots, c_{\text {B }}$ all have the opposite sign to $\epsilon_{6}, \ldots, c_{\mathrm{M}}$) nd that at leat one c_{U} ($p+1 \leq j \leq N$ is non zeo.

Then, the $I R R$ of \mathbb{C} exists and is unique.
\rightarrow Proof
We only write the proof when $c_{6}, \ldots, c_{M} \leq 0$ and $c_{M T 6}, \ldots, c_{B} \geq 0$ (the other case follows, replacing \mathbb{C} by $-\mathbb{C}$)
We will assume that for some $0 \leq p^{W} \leq p: c_{\mathrm{M}^{\mathrm{X}}}<0 \quad$ and the case $p^{W}<p: c_{\mathrm{M}^{\mathrm{X}} \mathrm{T} 6}=\cdots=c_{\mathrm{M}}=0$. Similarly, let $p^{W W} \geq p+1$ such that $c_{\mathrm{MXX}}>0 \quad$ and in the case $p^{W N}>p+1: c_{\mathrm{MT}}=\cdots=c_{\mathrm{MXX}} 36=0$. In other words, p^{\prime} is the last time t such that $c_{4}<0$ and $p^{W W}$ is the first time t_{M} such that $c_{4}>0$.

