Chapter 3

Loans

A loan takes place between two agents.

$$
\begin{gathered}
A=\text { borrower } \\
B=\text { lender }
\end{gathered}
$$

I) Notations

$$
C=\text { capital: the amount borrowed by } A \text { at } t=0
$$ s(ometimes C will be denoted C : or V : for value at time \varnothing

$$
m=\text { maturity of the loan(usually in years) : }
$$ time delay between time O (beginning of the loan land the last payment made by A

$r=$ nominal annual rate of the loan
I@ = amount of interests paid by A during year k
(usually I@ is paid at the end of year k)
$A_{@}=$ part of capital refunded during year k(amortization)

$$
\text { E@ }=I @+A @ \text { : annuity paid by } A
$$

$C @$ or $V @=$ capital due at the end of year k

$$
\left(V_{@}=V_{@ F G}-A_{@}\right)
$$

At the end of year n, we must have $V_{I}=0$, but
$V_{\mathbf{I}}=V_{\text {IFG }}-A_{\mathbf{I}}=V_{\text {IFJ }}-A_{\text {IFG }}-A_{\mathbf{I}}=\cdots=C-A_{G}-\cdots-A_{\mathbf{I}}$ So $C=A_{\mathrm{G}}+A_{\mathrm{J}}+\cdots+A_{\mathbf{I}}$

If we assume that the period of compounding is 1 year then r is also the effective annual rate. Then

II) Repayment methods

1) Repayment of capital "in fine"

We assume that payments of annuities occur at the end of each year: times $1,2, \ldots, n$
This means that $\left\{\begin{array}{c}A_{@}=0 \text { for } k=1,2, \ldots, n-1 \\ A_{\text {I }}=C=V:\end{array}\right.$
Then $V_{@}=V$: $=C$ for $k=0,1, \ldots, n-1$ and $V_{I}=0$ (as always)

$$
I_{G}=l_{J}=\cdots=l_{\mathbf{I}}=r C=r V:
$$

We can summarize this in an amortization table:

k	$V @$	$I @$	$A @$	$(E @)$
0	$V:$	0	0	0
1	$V:$	$r V:$	0	$r V:$

	\vdots	\vdots	\vdots	\vdots
k	$V:$	$r V:$	0	$r V:$
\vdots	$\vdots:$	$\vdots V:$	\vdots	\vdots
$n-1$	0	$r V:$	0	$r V:$
n		$c o s t=n r V:$	$V:$	$1+r V:$
TOTAL			$V r V:$	

This means that $A:=0, A_{G}=A_{J}=\cdots=A_{I}$
So V : $=n A$
$A=\frac{\mathrm{UV}}{\mathrm{I}}$
$V_{@}$ is an arithmetic sequence

So $V_{@}=V_{@ F G}-A$
So $V @=V:-k * A(=1 \overline{\mathbf{I}})^{@} V$:
So @ $\left.=r V_{@ F G}=r \mathbb{K}:-k A\right)=r\left(1-\frac{\varrho \mathrm{FG}}{\mathbf{I}} H:\right)$

$$
E_{@}=A+I_{@}=\left(\frac{1}{n}+\frac{r(n-k+1)}{n}\right) V=\frac{(1+(n-k+1) r)}{n} V:
$$

k	V@	I@	$A @$	E@
0	V :	0	0	0
1	$\left(\begin{array}{c}1--)^{n} \\ n\end{array} V^{\prime}\right.$	$r V$:	$\frac{V}{n}$	$\begin{gathered} 1+n 2 r \\ n \end{gathered}$
:			:	
k	$\left(\begin{array}{c}1-\frac{n}{n}\end{array} V^{\prime} V^{\prime}\right.$	$r\left(1-\frac{k-}{n}\right)^{\prime} V_{V}$	$\frac{V}{n}$	$\underbrace{1+n-k+1}_{n} r_{:}$
,			:	
$n-1$	$\frac{V}{n}$	$\frac{2 r}{n} V_{i}$	$\frac{V}{n}$	$\frac{1+2 r}{n}!$
n	0	$\frac{r}{n} V^{2}$	$\frac{V}{n}$	$\frac{(1+\eta)}{n} V$:
TOTAL		$\text { cost }=\frac{\pi+1}{2} r V$	V :	$V:+$ cost

At time 0 , an initial capital is borrowed, its amount is denoted K or V : .

Period	Interest	Amortization	Annuity	Outstanding loan capital
1	I_{G}	A_{G}	a_{G}	V_{G}
\vdots	\vdots	\vdots	\vdots	\vdots
k	$I_{@}$	$A_{@}$	$a_{@}$	$V_{@}$
\vdots	\vdots	\vdots	\vdots	\vdots
n	$I_{\text {I }}$	$A_{\text {I }}$	$a_{\text {I }}$	0

2) Method of constant annuity

We borrow an amount of capital $K=V$: at time 0 , at an annual rate $r>0$ (one canevenallow $r>-1$). Repayment will take place at the end of each year, and annuity will be constant : $a_{G}=a_{\mathrm{J}}=\cdots=a_{\mathbf{I}}=a$.

Question: find the value of a, using the method of present values.
Suppose we borrow V : $=K$ and that annuities are $a_{G}, \ldots, a_{\mathbf{I}}$.
At the end of period n, $I_{\mathbf{I}}=r * V_{\mathbf{I F G}} \quad a_{\mathbf{I}}=l_{\mathbf{I}}+A_{\mathbf{I}}$,
$A_{\mathbf{I}}=V_{\mathbf{I F G}} \quad$ so $\quad a_{\mathbf{I}}=r * V_{\mathbf{I F G}}+V_{\mathbf{I F G}}=(1+r) V_{\mathbf{I F G}}$
So

$$
\begin{aligned}
& I @ m G=r V_{@} \\
& a_{@ m G}=r V @+V @-V @ m G=(1+j) V @-V @ m G
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
=(1+r)^{\mathrm{FG}} a_{@ m G}+(1-r)^{\mathrm{FG}} V_{@ m G} \\
=(1+r)^{\mathrm{FG}} a_{@ m G}+(1+r)^{\mathrm{FG}}\left((1+r)^{\mathrm{FG}} a_{@ m J}+(1+r)^{\mathrm{FG}} V @ m J\right)
\end{array} \\
& =(1+r)^{\mathcal{F G}^{G}} a_{@ m G}+\left(1+r^{{ }^{\mathrm{J}}{ }^{\mathrm{J}} a_{@ m J}+(1+r)^{\mathrm{FJ}} V_{@ m J}, ~}\right. \\
& =(1+r)^{\mathrm{G}} a_{@ m \mathrm{~m}}+(+r)^{\mathrm{J}} a_{@ m コ}+\cdots+(1+r)^{\text {FIm@mG }} a_{\mathbf{I F G}}+(1+r)^{\mathbf{I F} @ \mathrm{mG}} V_{\mathbf{I F G}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { @ }
\end{aligned}
$$

@mG
In particular:

$$
K=V:=(1+\eta)^{\mathrm{FG}} a_{G}+(1+r)^{\mathrm{FJ}} a_{\jmath}+\cdots+(1+\eta)^{\mathrm{FI}} a_{\mathbf{I}}=\sum_{\mathrm{fLG}}^{\mathrm{I}}(1+r)^{\mathrm{Ff}} a_{\mathrm{f}}
$$

Applicationtoconstantannuity:

$$
a_{\mathrm{G}}=a_{\mathrm{J}}=\cdots=a_{\mathbf{I}}=a
$$

So

$$
\begin{aligned}
K=\left(\sum_{f \mathrm{fG}}^{\mathbf{I}}(1+r)^{\mathrm{Ff}}\right) a= & \frac{1}{1+r} \sum_{0 \mathrm{~L}:}^{\mathbf{I F G}}\left(\frac{1}{1+r}\right)^{0} a=\frac{1}{1+r} * \frac{1-\left(\frac{1}{1+r}\right)^{\mathbf{I}}}{\frac{1}{1+r}} a \\
& =\frac{1-(1+\eta)^{\mathrm{FI}}}{1-r} a \\
& \Rightarrow a=\frac{r r K}{1-(1+r)^{\mathrm{FI}}}
\end{aligned}
$$

So $A_{@}=a-r V_{@}$ FG

$$
V @=\sum_{f \mathrm{LG}}^{\mathrm{IF}}(1+r)^{\mathrm{Ff}} a_{@ m f}=\left(\sum_{\mathrm{fLG}}^{\mathrm{IF}}\left(\begin{array}{r}
\left.1+r^{\mathrm{Ff}}\right)
\end{array}\right) a=\frac{1-(1+r)^{\mathrm{F}(\mathbf{I F} 9}}{r} a\right.
$$

Application to constant annuity:

$$
\begin{gathered}
V_{@}=\frac{\left.1-(1+r)^{F(}\right)}{1-(1+r)} K \\
A_{@}=V_{@ F G}-V_{@}=\frac{(1+f F \mathbb{F} @(-1+r F \quad)}{\left.t^{F @ m G}\right)_{\ldots r}} K \\
=\frac{\left.\left(\frac{1}{r}+r\right)^{F^{(}}\right)((1+r)-1)^{\prime}}{1-(1+r)} K=(1+r)^{@ F G} \frac{r k}{(1+\eta)^{I}-}
\end{gathered}
$$

So

$$
A_{@}=(1+r)^{@ F G} A_{G}
$$

with $A_{\mathrm{G}}=\underset{\text { (GmIE) }}{[\mathrm{s}}$.
We have proved that (A @ is a geometric sequence of multipliér $1+$) $r>1$, if $r>0$.
What is the total cost of the loan?

$$
\begin{aligned}
\text { Cost } & =\sum_{@ \mathrm{LG}}^{\mathrm{I} @}=\sum_{n r K}^{\mathbf{I}}(a-A @)=n a-\sum_{@ \mathrm{LG}}^{\mathbf{I}} A_{@}=n a-K \\
& \Rightarrow \cos t=\frac{n}{1-(1+r)}=K \quad\left(\frac{n r}{1+1+) r}-1\right) K
\end{aligned}
$$

Comment: if you have a loan with monthly payment with annual nominal rate r, this means that compounding is applied, with compounding period of a month or a twelfth a year.

The monthly interest rate is $r_{g}=\frac{\frac{1}{G}}{G}$ (since r is nominal)
Now if the capital borrowed is K and themonthly annuities are $a_{G}, \ldots, a_{\mathrm{u}}($ months $1,2, \ldots, N) N=36$ for 3 years.
We must have $K \quad \sum_{\mathrm{fLG}}^{\mathrm{u}}\left(1+r_{\mathrm{G}}\right)^{\mathrm{Ff}} a_{f}$

